On the Relationship of Barotropic Singular Modes to the Low-Frequency Variability of a General Circulation Model

1996 ◽  
Vol 53 (16) ◽  
pp. 2393-2399 ◽  
Author(s):  
Ileana Bladé
2014 ◽  
Vol 44 (8) ◽  
pp. 2050-2069 ◽  
Author(s):  
Brian K. Arbic ◽  
Malte Müller ◽  
James G. Richman ◽  
Jay F. Shriver ◽  
Andrew J. Morten ◽  
...  

Abstract Motivated by the potential of oceanic mesoscale eddies to drive intrinsic low-frequency variability, this paper examines geostrophic turbulence in the frequency–wavenumber domain. Frequency–wavenumber spectra, spectral fluxes, and spectral transfers are computed from an idealized two-layer quasigeostrophic (QG) turbulence model, a realistic high-resolution global ocean general circulation model, and gridded satellite altimeter products. In the idealized QG model, energy in low wavenumbers, arising from nonlinear interactions via the well-known inverse cascade, is associated with energy in low frequencies and vice versa, although not in a simple way. The range of frequencies that are highly energized and engaged in nonlinear transfer is much greater than the range of highly energized and engaged wavenumbers. Low-frequency, low-wavenumber energy is maintained primarily by nonlinearities in the QG model, with forcing and friction playing important but secondary roles. In the high-resolution ocean model, nonlinearities also generally drive kinetic energy to low frequencies as well as to low wavenumbers. Implications for the maintenance of low-frequency oceanic variability are discussed. The cascade of surface kinetic energy to low frequencies that predominates in idealized and realistic models is seen in some regions of the gridded altimeter product, but not in others. Exercises conducted with the general circulation model suggest that the spatial and temporal filtering inherent in the construction of gridded satellite altimeter maps may contribute to the discrepancies between the direction of the frequency cascade in models versus gridded altimeter maps seen in some regions. Of course, another potential reason for the discrepancy is missing physics in the models utilized here.


2013 ◽  
Vol 54 ◽  
pp. 200 ◽  
Author(s):  
Terence John O'Kane ◽  
Richard Matear ◽  
Matthew Chamberlain ◽  
James Risbey ◽  
Illia Horenko ◽  
...  

2007 ◽  
Vol 135 (9) ◽  
pp. 3118-3133 ◽  
Author(s):  
Isabella Bordi ◽  
Klaus Fraedrich ◽  
Frank Lunkeit ◽  
Alfonso Sutera

Abstract The observed low-frequency variability of the zonally averaged atmospheric circulation in the winter hemisphere is found to be amenable to an interpretation where the subtropical jet is flanked by a secondary midlatitude one. Observations also suggest that the link between the stratosphere and the troposphere modulates the variability of the tropospheric double-jet structure. Moreover, the summer hemisphere is characterized by a strong midlatitude jet sided by an intermittent subtropical one and easterly winds in the stratosphere. This work addresses the question about the role of eddies in generating and maintaining these key features of the general circulation by means of a simplified general circulation model. Model solutions for different parameter settings and external radiative forcings in the stratosphere are studied with and without eddies active on the system. The following main findings are noted. 1) Eddy dynamics alone, through the baroclinic instability processes in an atmosphere subjected to radiative forcing and dissipation, may account for the observed meridional variance of the tropospheric jets. 2) The Hadley cell can extend to the pole overlying the Ferrel cell, a feature supported by observations in the summer hemisphere. 3) The meridional temperature gradient reversal in the summer stratosphere contributes to the observed low-frequency variability introducing an intermittent formation of a subtropical jet and the occurrence of easterlies in the tropical stratosphere. 4) Poleward propagation of the zonal wind anomaly is, when it occurs, related to the activity of synoptic eddies.


An atmospheric general circulation model (GCM) was forced with the observed near-global sea surface temperature (SST) pattern for the period January 1970-December 1985. Its response over the Pacific Ocean is compared with Tahiti and Darwin station sea-level pressure and wind stress analyses obtained from Florida State University. The time-dependent SST clearly induces in the model run a Southern Oscillation that is apparent in the time series of all considered variables. The phase of the GCM Southern Oscillation is as observed but its low-frequency variance is too low and the spatial pattern is confined mainly to the western Pacific. The model is successful in reproducing the warm events of 1972—73 and 1982—83 and the cold event 1970—71, but fails with the cold events 1973-74 and 1975-76 and with the warm event 1976-77. Because the GCM is used as the atmospheric component in a coupled model, the response of an equatorial oceanic primitive equation model to both the modelled and observed wind stress is examined. The ocean model responds in essentially the same way to forcing with the observed wind stress and to forcing that corresponds to the first two low-frequency empirical orthogonal functions (EOFS) of the wind variations. These first two EOFS describe a regular eastward propagation of the so signal from the western Pacific to the central Pacific within about one year. The ocean model’s response to the modelled wind stress is too weak. It is similar to the response to the first observed wind stress EOF only. That is, the observed Southern Oscillation appears as a sequence of propagating patterns but the simulated Southern Oscillation appears as one standing pattern. The nature of the deviation of simulated wind stress from observations is further analysed by means of model output statistics.


Sign in / Sign up

Export Citation Format

Share Document